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The successive time derivatives of relative entropy and entropy production for a system with
a reversible first-order reaction alternate in sign. It is proved that the relative entropy for reactions
with an equilibrium constant smaller than or equal to one is completely monotonic in the whole
definition interval, and for reactions with an equilibrium constant larger than one this function
is completely monotonic at the beginning of the reaction and near to cquilibrium.

In 1966, McKean arrived at the supposition that successive time derivatives of entropy
alternate in sign'. This hypothesis was verified by numerical calculations for some
mechanical systems and dissociation in the gas phase? (other literaturé is given in
ref.?). :

The aim of the present work was to test McKean'’s hypothesis on the reaction entropy
of a reversible first-order reaction A = B. In this case the entropy is known as an
explicit function of time and the problem can be solved analytically.

Reaction Entropy

The following cquation for the entropy, S(f), produced by a reaction A = B under
thermal equilibrium conditions (reaction entropy) can be derived from the postulates
of thermodynamics of irreversible processes’:

S(t) = 8. = = R[na(t) In (na(t)/n3) + ng(t) In (ne(t)]n5)] 0
where S, denotes the entropy in equilibrium, ny(f) the concentrations of components
X = A, B at time ¢, n§ their concentrations in equilibrium, and R the gas constant.

The concentrations ny(f) can be determined as functions of time by integrating
equations of the mass action law and using the initjal condition n,(0) = n,, ny(0) = 0:

na(t) = [nof(1 + K)][1 + K.exp (—ar)], (2a)

ny(t) = [noKJ(L + K)] [1 — exp (—at)], (2b)
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where a =k, + k,, k; is the rate constant of reaction A — B, k, for reaction
B - A, and K = k[k, is the equilibrium constant. By substituting (2a, b) into ()
we obtain the time dependence of the reaction entropy in the explicit form:

S(f) = Se = —[Rno[(1 + K)][(L + K .exp(—a))In(1 + K. exp (—ar)) +
+ K(1 ~ exp(—at)) In (1 — exp (—at))] . 3)

Properties of Derivatives of Relative Entropy

A function f(t) is according to the definition** completely monotonic in the interval
a <t < b, if it has here derivatives of all orders and

(=1 &) z 0. )

We shall introduce a new function, the relative entropy, which is, in the stochastic
interpretation, analogous to Schlégl’s K function®:

H) = ~(S0 = SR = 3 m)n (rx0)r) ©)

and we shall examine if it fulfils the condition (4).

For K < 1, the logarithmic terms in Eq. (3) can be expanded in scries and substi-
tuted into (5) to obtain

HE) = [nof(1 + K] S o0 [+ D] [K + (RPG + 0. (0
By differentiating this series successively we obtain
d"H(f)/dr" = (= 1)* [no(1 + K)] a".

T -G+ D) [K+ (-KF1G -+ 77D )

This series is uniformly convergent in the interval 0 < h <t < oo and its termwise
differentiating is justified in this interval. Since all terms to be summed in Eq. (7) are
positive for K < 1 (non-negative for K = 1), we have

(-1 dH(B)jde 2 0, @8)

i.e, H(t) is completely monotonic for K £ 1,0 < h =t < 0.
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The function H({) can be written in the form

H(t) = [nof(t + K)] [H,()) + HA()] ©)

where

Hi()=[1+K.exp(—at)]In[1 + K.exp(—at)] — K.exp(~at) >0, (I0a)
Hy(1) = K[l —exp (—at)]In[1 — cxp (—at)] + K .exp(—af) > 0. (10b)

That both these quantities are positive follows from the inequality zInz > z — 1,

z >0, z # 1. The function Hy(t) = K ¥ [1/j(j + 1)]exp[— (j + 1) at] is com-
j=1

pletely monotonic in the interval 0 < h <t < co. Differentiation of the function
H (1) leads to the result

d"H,()[d" = (=1)"a™{K .cxp (—at) In[1 + K. exp (—af)] +
+ K2 exp (—2at) P(K . exp (—a))[[1 + K . exp (~at)]"" 1}, (1

where P,(x) is a polynomial of degree n — 2 in x = K.exp (—at):
n-2
Pi(x) =0, PJx)= Zag")x' , n=2, (12)
i=0
and the coefficients are given by the recurrent formula
a§"+'>=("T1)+(i+z)ag">_(n_i_z)ag"_n, Osisn—1. (J3)
i
The polynomials P,(x) through Py(x) are listed below:

Px) =0, Py(x)=1, Py(x)=3+2x,

Py(x) =7+ 8x + 3x?, Ps(x) = 15 + 20x + 15x* + 4x7,

Py(x) = 31 + 34x + 46x? + 24x° + Sx*,

Pi(x) = 63 + 14x + 126x% + 84x> + 35x* + 6x°,

Pg(x) = 127 — 204x + 477x* + 188x> + 141x* + 48x> + 7x°,

Po(x) = 255 — 1240x + 2745x> — 456x> + 505x* + 216x° + 63x® + 8x” .
These polynomials are positive in the interval 0 £ x < oo and the time derivatives

of H,(t) alternate in sign. From this and from the complete monotonicity of Hy(t)
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it follows that the odd derivatives (n = 1,3, 5,7,9) of H() are negative and the
even ones (n = 2, 4, 6, 8) are positive for any K > 0 and 0 < t < o0.

The absolute term of P,(x) is positive for n = 1 and according to Eq. (13) equal
to 2"7' — 1, hence for sufticiently large ¢ values (x — 0) we have
d"H,(1)[d* ~ (=1)"a 2" *K?exp (—2af), t— o, (14)
d"H,(1)[di" & (1) " 2" 'K cxp (= 2at), t— o0, (15)
and in the proximity of equilibrium we have
d H(1)/dt" = (—1)" nga" 2" 'K exp (—2at), t— 0. (16)
This is in accord with Pritchard’s hypothesis® about the limiting behaviour of the

entropy (In |[d"S(r)/ds"| is in the limit for large ¢ values a lincar function of f).
We define a new variable

u=1—exp(—a). (17)

In the interval 0 < ¢ < oo we have 0 < u < 1 and du/df = a exp (—at) is a com-
pletely monotonic function. On introducing u into H,(f) and H,(1) we obtain

() + Hy() = g(u) = (1 + K — Ku)In(1 + K — Ku) + Ku.lnu >0, (I8)
dg(u)/du = =KIn(1 + K — Ku) + Klnu <0, (19)

dg(w)fdu® = (= 1) (n — 2! K[1fun~t +
+(—0)" K1+ K — Kuy™1], nz 2. (20)

For even n, the expression in square brackets in Eq. (20) is positive in the interval
0 < u < 1, for odd n it is positive if (1 + K — Ku)/Ku > 1, i.e., for K > 1in the
interval 0 < u < (L + K)[2K and hence for 0 < t < (1/a)In [2K/(K — 1)], which
corresponds to na(f) > nf2. It follows from the rule about differentiation of compos-
ite functions that the composite function @(y(t)) is completely monotonic if ¢ is
completely monotonic and ¥ is a positive function with a completely monotonic
derivative®. The function H,(f) + H,(t) = g(u(t)) fulfils these requirements for
K > 1in the interval 0 < ¢ < (1]e).Jn [2K[(K — 1)].

The entropy production due to chemical reaction in a time unit, dS(¢)/df =
= —dH(1)/dt, is completely monotonic if the relative entropy H() is completely
monotonic. It has been shown that the function H(r) has the property (8) for K < 1
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in the interval 0 <h £t < o and for K > 1 in the interval 0 <t < (1[u).
In [2K[(K — 1)](i-e., for na(f) > no[2)and in thelimit t — oo (close (o equilibrium).
In the general case for K > 0, at least the first nine successive derivatives of H(r)
alternate in sign in the interval 0 < t < oo and the derivatives d*S(¢)[d¢" (n = 1,
2,...,8) have no extremum. This generalizes numerical results obtained by Pritchard”.
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Translated by K. Micka.
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